

北京圆志科信凌卡模块

应用手册

M106CXN

地址: 北京市朝阳区电子城科技园大山子北里小5楼

电话: 010-64389905

Web: http://www.yzrfid.com E-Mail: service@yzrfid.com

目 录

0. 1	1	.3
	概述	
	M106CXN 125K 读卡模块:	
1.2	产品型号及之间的区别:	. 4
2.	功能特点:	.4
3.	硬件描述:	.4
3.1	<i>管脚说明:</i>	. 5
3.2	电气特性:	. 5
3.3	· 结构尺寸:	. 5
	数据通讯协议:	
	数据通讯接口的选择:	
4.2	协议描述	. 5
4.3	12C 协议	. 5
4.4	异步半双工UART 协议	. 6
5.	命令列表	.7
	应用电路举例	.7
6	1 W106CYN_125K	-

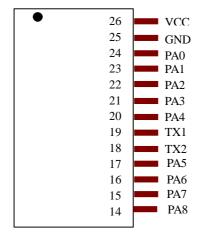
0.1 更改历史记录

版本	描述	日期
V1.0	第一版发布	2006. 6. 1
V1.1	(1) 增加更改记录控制; (2) 增加应用电路图;	2007. 11. 15

1. 概述

1.1 M106CXN 125K 读卡模块:

M106CXN 非接触 IC 卡射频读卡模块采用 125K 射频基站。当有卡靠近模块时,模块会以韦根 或 UART 方式输出 ID 卡卡号,用户仅需简单的读取即可。该读卡模块完全支持 EM、TK 及其兼容卡 片的操作, 非常适合于门禁、考勤等系统的开发。


1.2 产品型号及之间的区别:

型号	主要区别
M106CSN	UART/IIC接口, 5. 0V
M106CSNL	UART/IIC接口, 3.3V

2. 功能特点:

- 支持EM、TK及其兼容卡片:
- 超小体积,仅32.5mm×17.5mm;
- 具有RS485接口(可联网)和可控蜂鸣器信号输出;
- 模块可扩展1/0,部分可设为漏极开路,推挽等,很容易嵌入到你的系统
- 低功耗,读卡电流29mA
- 基于模块的扩展功能很强可根据**用户要求修改软件定制**个性化模块,不用改变线路板;
- 通用协议:
- UART: 适用于PC机或8位UART的单片机,波特率19200BPS。
- 自带看门狗

3. 硬件描述:

3.1 管脚说明:

管脚	符号	描述
14	PA8	备用;
15	PA7	一般 I/0 口;
16	PA6	一般 I/0 口;有无卡指示(默认)
17	PA5	一般 I/0 口;
18	TX2	天线 2 发送管脚(345uh 电感线圈其中一端)
19	TX1	天线 1 发送管脚(345uh 电感线圈其中一端)
20	PA4	一般 I/O 口; RS485 方向转换控制;
21	PA3	一般 I/0 口; 串口发送端(默认)
22	PA2	一般 1/0 口; 串口接收端(默认)
23	PA1	一般 I/O 口(默认); I ² C 数据,无上拉
24	PA0	一般 I/O 口(默认); I ² C 时钟输入端,无上拉
25	GND	数据地
26	VCC	电源 5V

3.2 电气特性:

典型工作电源: 4.5-5.5V

读卡电流: 5V/29 mA 工作温度: 0℃~+70℃ (可订做-20℃~+85℃)

3.3 结构尺寸:

模块尺寸: 32.5x17.5mm (标准DIP26)

管脚间距: 2.54mm

4. 数据通讯协议:

4.1 数据通讯接口的选择:

上电后 I²C 与 UART 均有效,直到接收到第一帧有效数据后自动选择该接口,模块的另一种接口 自动无效。

4.2 协议描述

通信必须先由主机发送命令和数据给模块,模块执行命令完毕后,命令执行的状态和响应数据 发回主机。

4.3 I2C 协议

- 模块 I²C 地址为 0xB0
- 通讯速率为: 400K

发送数据格式:

长度字 命令字 数据域 校验字 模块地址+W/R

模块地址+W/R:

模块地址为: 0xB0, 写 b i t 0 为 0, 则写指令为: 0xB0 + 0x0 = 0xB0

模块地址为: 0xB0, 读 bit0 为 1, 则读指令为: 0xB0 + 0x1 = 0xB1

长度字: 指明从长度字到数据域最后一字节的字节数。

命令字: 本条命令的含义。

数据域:此项可以为空。

校验字: 从长度字到数据域最后一字节的逐字节异或值(最后一字节)。

● 返回数据格式:

接收到的命令字 成功: 长度字 数据域 校验字 接收到的命令字取反 失败: 长度字 校验字

4.4 异步半双工 UART 协议

- UART 接口一帧的数据格式为 **1 个起始位, 8 个数据位, 1 个地址/数据标志位, 1 个停止位**。
- 波特率: 19200。
- 发送数据封包格式:

(注: 模块地址为地址帧第 9 位数据为 1,其他的为数据帧第 9 位数据为 0) 数据包内容:

模块地址(2B)	长度字(1B)	命令字(1B)	数据域(nB)	校验字(1B)

模块地址:对于单独使用的模块来说固定为 0x00:

对网络版模块来说为 0x01~0XFE:

0xFF 为广播(不回答)。

注:模块地址为完全相同的2字节.

长度字: 指明从长度字到数据域最后一字节的字节数(包括长度字)

命令字: 本条命令的含义

数据域:该条命令的内容,此项可以为空

校验字: 从长度字到数据域最后一字节的逐字节异或值(最后一字节)。

返回数据封包格式:(注:所有字节的第9位数据为0)

数据包内容:

命令头	长度字	命令字	数据域	校验字
-----	-----	-----	-----	-----

命令头: 0xAA 0x55, 若后续数据中包含 0xAA 则随后补充一字节 0x00 以区分命令头但

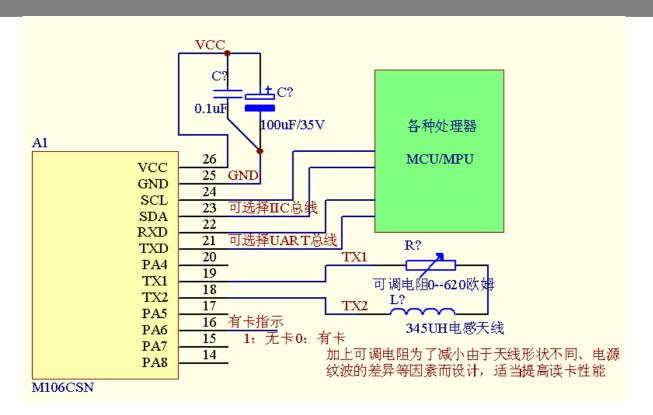
长度字不增加

长度字: 指明从长度字到数据域最后一字节的字节数

命令字: 执行正确为接收到的命令字:

执行错误为接收到的命令字逐位取反;

数据域: 该条命令返回的内容


校验字: 从长度字到数据域最后一字节的逐字节异或值(最后一字节)。

5. 命令列表

基本命令集

序号	命令 名称		长度 字	命令字	数据及说明	
	卡片级操作命令					
		发送	0X03	0x20	1字节寻卡模式: 0: 寻天线区内已经存在的卡(可判断卡片的存在) 1: 寻刚进入天线区域内的卡,回应卡号后只有离开 才能再次寻到	
1	寻卡	正确 返回	0X06	0×20	4 字节卡序列号	
		错误 返回	0X02	0xDF	没卡片或卡片一直在天线区域内	
	模块命令集					
		发送	0X03	0x13	1 字节设备标识符	
		正确 返回	0X02	0x13		
5	设 5 6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	错误 返回	0X02	0×DC		
		正确 返 回	0X04	0x16	2 字节硬件版本号	
		错误 返回	0X02	0xD9		
	读取产序	发送	0X02	0x17		
9		正确 返 回	OXOA	0x17	8 字节产品序号	
	号	错误 返回	0X02	0xD8		

- 6. 应用电路举例
- 6.1 M106CXN-125K

