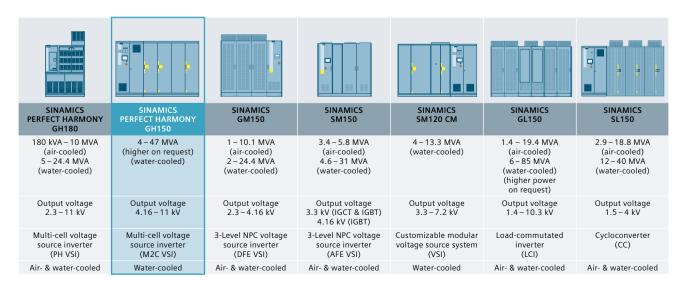


Versatility. Availability. The choice is easy.

siemens.com/sinamics-perfect-harmony-gh150

Market-leading performance you can count on

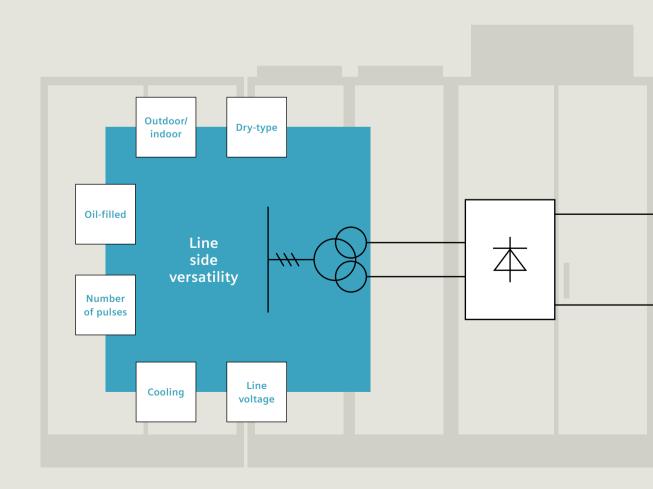
Siemens' cell-based SINAMICS PERFECT HARMONY drives, which connect a series of low-voltage cells together to build the medium-voltage power output of the drive, are a true success story. They have become one of the world's best-selling medium-voltage drives since the introduction of the first PERFECT HARMONY drive in 1994. They have become synonymous with reliability, efficiency, and versatility. The innovative and proven cell-based technology has provided customers with improved drive system reliability and performance in thousands of applications worldwide.


All drives are backed by Siemens' commitment to customer satisfaction and industry-leading quality standards.

To provide even greater versatility to the current product line, Siemens added the SINAMICS PERFECT HARMONY GH150 and continues the proven legacy of offering customers an unparalleled range of features and advantages for new applications as well as for retrofits.

Why choose a drive because it can meet the basic requirements, when you could be choosing one that is perfect for your applications requirements and maximizes its performance, efficiency and long-term reliability? It is time to make smarter choices and choose drives based on the natural benefits and appropriateness of the technology. One topology or drive configuration does not fit all applications.

As the world's leading manufacturer for medium-voltage drives, Siemens sets standards worldwide – in terms of its installed power base and offering the most diverse and reliable portfolio of drives. With over 4 decades of experience manufacturing nearly every type of medium-voltage drive that exists today, we have created our portfolio of drive technologies to specifically suit your most basic or most specialized applications.

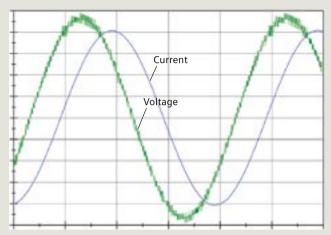

Versatile enough to suit nearly any plant's needs

Drive flexibility

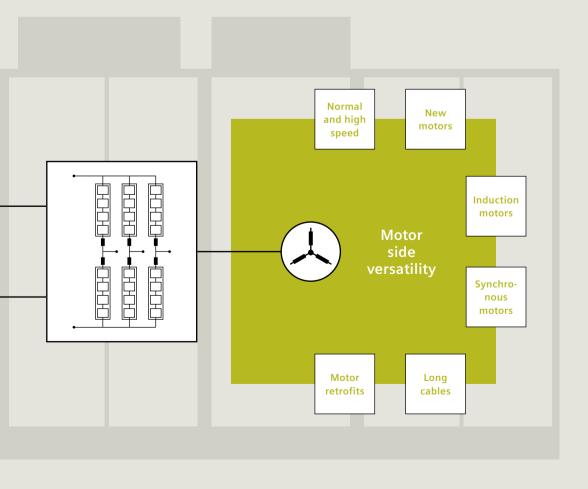
SINAMICS PERFECT HARMONY GH150 drives are specially designed to offer greater versatility and easy integration. Their modular design enables the use of a separate transformer as well as a separate control cabinet. This helps adjust the footprint of the drive and optimize the plant layout. The control cabinet can even be installed in a low-voltage operator's room for facilitated operation of the drive.

Line side versatility

The SINAMICS PERFECT HARMONY GH150 raises the standards for transformer flexibility for cell-based medium-voltage drives: Site conditions can require the use of a transformer in a separate location, either inside or outside the plant, and the flexibility to allow for different transformer specifications, such as cooling, size, pulse number, and primary voltage. Answering this demand, SINAMICS PERFECT HARMONY GH150 can also help minimize initial investment cost for electrical room air-conditioning as well as continuous operating costs. The option to choose a standard transformer may even reduce cost of ownership thanks to local sourcing.



Motor side versatility


SINAMICS PERFECT HARMONY GH150 drives are capable of working with almost any induction or synchronous motor available, which makes them perfect for retrofit projects and high-speed applications. They also provide great flexibility in operating a motor with long cables even above several kilometers.

Optimal setup for high-speed motor applications

This drive is often used with high speed compressors or integrated compressors that have need of high output frequencies. The higher the motor speed, the higher the required VFD output frequency. The GH150 with its inherent and highly effective switching frequency requires less or no current derating, which leads to less oversizing of the drive and results in higher efficiency. Additional losses in the motor often have to be minimized due to the compact motor design.

SINAMICS PERFECT HARMONY GH150's cell-based design ensures such low harmonic distress on the motor that a separate output filter is not required.

For pumps, fans, compressors in...

The SINAMICS PERFECT HARMONY GH150 is optimally suited for pumps, fans, and compressors in applications with a separate transformer. It also further expands the number of applications already served by SINAMICS PERFECT HARMONY drives by adding the ability to support marine and offshore applications.

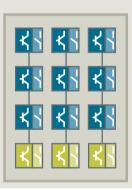
SINAMICS PERFECT HARMONY GH150 drives serve some of the most demanding applications all around the world in industries such as:

- Oil and gas
- Power generation
- Metals
- Mining

- Water and wastewater
- Marine
- Offshore applications

Standard Performance or Full Performance Protection

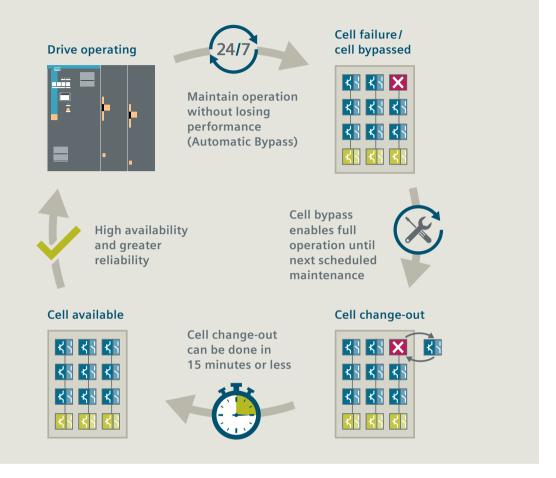
Every application or process has different requirements in terms of the levels of availability that they must maintain to maximize their productivity and profitability. SINAMICS PERFECT HARMONY GH150 offers two different levels of process performance for your application. Choose the level that best supports the needs of your application:


Standard Performance

Standard Performance

Our basic performance class matches the industry standard found in most of today's medium-voltage drives, but it also features our motor-friendly M2C motor modul. Due to the cell-based design, the drive is also able to offer the advantage of an almost sinusoidal wave form similar to that of our well-known SINAMICS PERFECT HARMONY GH180 drives.

Full Performance Protection


Full Performance Protection

When availability is paramount for your process flow, this better performance class gives you confidence in the uninterrupted long-term productivity of your application. The entire Full Performance Protection design offers you advantages that no other competitor can match, it is truly unique. This protection class offers all the benefits of the Standard design, but also offers the industry's fastest cell bypass functionality and cell redundancy. This ensures that if a cell should fail, you not only maintain uninterrupted operation, but you also see no drop in the operational performance or efficiency.

The SINAMICS PERFECT HARMONY GH150 is the perfect solution for large, high-speed compressors in the oil & gas industry due to its high availability and high output frequency capabilities.

Outstanding availability and reliability thanks to extremely fast cell bypass and quick change-out

Scalability is the key to redundancy

A drive can be built with additional cells as part of our Full Performance Protection design. This further adds to the applications' overall reliability and maximizes their process availability by ensuring full performance in the event of a failed cell via the use of redundant cells.

When a SINAMICS PERFECT HARMONY GH150 drive includes redundant cells and one cell is bypassed, the drive still produces sufficient voltage for the process to continue uninterrupted, and the output quality and voltage waveform remain virtually unchanged.

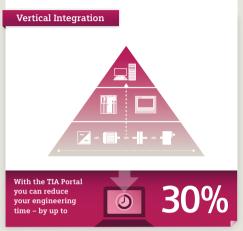
High-speed cell bypass

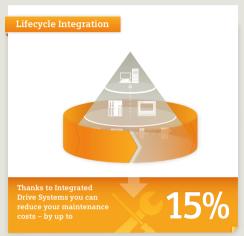
In less than one millisecond, the SINAMICS PERFECT HARMONY GH150 drives can bypass any failed cells to maintain an uninterrupted output voltage. In other words, your process is not disturbed or experiences any drop in performance.

Siemens stands for world-class quality and reliability

Committed to providing the best product every time

Siemens is known for our commitment to our customers and partners. However our commitment is also providing motors and drives of the highest quality and reliability. To ensure our customers receive this high industry standard:


- All of our products are put through rigorous tests in our state-of-the-art testing centers
- Our suppliers are put through strenuous qualification processes and are constantly under evaluation
- All components can be tracked and monitored to ensure quality control both in production and with drives already in operation
- All new software, features and technology utilized in a drive are put through extensive testing to ensure optimal performance and eliminate risk


Nothing leaves our factories without meeting our quality standards; we would rather ensure your process reliability than provide you with a product that is not able to perform up to your expectations — or ours. We never want to see a product leave our factory without it performing its best. We stand behind our products with extensive warranties and a commitment to helping you reach and exceed your performance goals.

"The innovative strength of Siemens and the outstanding quality of our products and solutions are central to the success of our company, and our customers."

The ideal drive for your Integrated Drive System

Plant-, system- and motor-friendly

The SINAMICS PERFECT HARMONY GH150 drive has a number of different benefits that can make it the optimal drive for an integrated drive system solution. SINAMICS PERFECT HARMONY GH150 can be easily configured to:

- operate high-speed applications
- adjust to high input voltages
- reduce high inrush currents when being turned on (transformer)
- operate with different cable lengths
- be combined with virtually any kind of motor
- be adjusted to any performance level
- · transformer flexibility

These elements of the SINAMICS PERFECT HARMONY GH150 drive provide the highest degree of system flexibility and the greatest potential for implementing the optimal solution in your application.

The SINAMICS PERFECT HARMONY GH150 offers you the opportunity to maximize your plant layout, drive system concept, drive availability and overall application reliability in a very customizable way.

Easily adaptable to your individual requirements

High flexibility thanks to separate dry-type or oil-filled standard converter transformers.

Maximized process reliability thanks to cell-based drive with cell bypass and redundant cells.

Extremely motor-friendly behavior thanks to almost sinusoidal output voltage.

Option to integrate dynamic braking for controlled and fast shutdown.

Plant safety concepts become easier thanks to internal arc-fault-tested design based on IEC 62271-200.

Additional benefits at a glance

- Flexible transformer and control cabinet placement for smaller footprint in the operation area, facilitated maintenance, and increased safety thanks to modular design.
- Accommodation of any transformer type, size, primary voltage or number of pulses.
- High-speed cell bypass feature maintains a reliable and balanced output voltage with no speed reduction.
- Front access design makes overall drive maintenance easier and allows for installation close to a wall.
- Also available in a marine version that meets the requirements of all major marine classification organizations.

Input

- Line side: 12- to 36-pulse diode rectifier without regenerative feedback
- Input frequency: 50 / 60 Hz
- Line power factor: > 0.95

Output

- Modular multi-level converter with configurations between 24 and 48 power cells
- Power range: up to 47 MVA;
 higher power configurations on request
- Motor voltages: 4.0 11 kV
- Output frequency: 0 150 Hz, higher values on request
- Max. motor cables length: 1,000 m; longer distances on request

Motor control

- Vector control
- Speed encoder (optional)
- Induction motors
- Synchronous motors

Drive

- Cooling type: water-cooled
- Redundant recooling pumps
- Dynamic braking as option
- Conformance with standards: IEC, CE, CSA, UL, marine classifications

Software functions

- Cell bypass and cell redundancy
- Automatic restart following interruptions in operation as a result of a power failure
- Smooth connection of converter to rotating motor
- Kinetic buffering
- Automatic motor identification for control optimization
- Programmable ramp-up and ramp-down times
- Ramp smoothing

Drive technical data

						S	ingle cir	cuit driv	e				
						12-pulse 18-pulse				24-pulse		36-pulse	
Output voltage (kV)	No. of cells	Cell Type	Pulse number	Output current (A)	Type rating (kVA)	Width (m)	Weight (kg)	Width (m)	Weight (kg)	Width (m)	Weight (kg)	Width (m)	Weight (kg)
4.0	24 -	700		720	5,000	6.1	6,000	7.3	6,400	7.3	6,620	8.5	7,220
4.16		1100	12-36	1,180	8,200	6.3	6,680	7.5	7,000	7.5	7,220	8.7	7,820
		700	pulse	710	5,100	6.1	6,000	7.3	6,400	7.3	6,620	8.5	7,220
		1100		1,160	8,400	6.3	6,680	7.5	7,000	7.5	7,220	8.7	7,820
4.0		700	12–36 pulse	760	5,300	6.8	6,710	8.0	7,320	8.0	7,330	9.2	7,930
		1100		1,280	8,900	7.2	7,400	8.4	8,010	8.4	8,020	9.6	8,620
4.16		700		760	5,500	6.8	6,710	8.0	7,320	8.0	7,330	9.2	7,930
		1100		1,280	9,200	7.2	7,400	8.4	8,010	8.4	8,020	9.6	8,620
5.5	30	700		710	6,800	6.8	6,710	8.0	7,320	8.0	7,330	9.2	7,930
		1100		1,140	10,900	7.2	7,400	8.4	8,010	8.4	8,020	9.6	8,620
6.0		700		580	6,000	6.8	6,710	8.0	7,320	8.0	7,330	9.2	7,930
		1100		930	9,700	7.2	7,400	8.4	8,010	8.4	8,020	9.6	8,620
5.5		700	12 – 36 pulse	790	7,500	6.8	6,960	8.0	7,570	8.0	7,580	9.2	8,180
6.0	36	1100		1,270	12,100	7.2	7,700	8.4	8,310	8.4	8,320	9.6	8,920
		700		790	8,200	6.8	6,960	8.0	7,570	8.0	7,580	9.2	8,180
		1100		1,220	12,700	7.2	7,700	8.4	8,310	8.4	8,320	9.6	8,920
6.6		700		720	8,200	6.8	6,960	8.0	7,570	8.0	7,580	9.2	8,180
		1100		1,160	13,300	7.2	7,700	8.4	8,310	8.4	8,320	9.6	8,920
6.9		700		690	8,200	6.8	6,960	8.0	7,570	8.0	7,580	9.2	8,180
		1100		1,110	13,300	7.2	7,700	8.4	8,310	8.4	8,320	9.6	8,920
6.6		700		790	9,000	7.1	7,330	8.3	7,940	8.3	7,950	9.5	8,550
6.9		1100	12-36	1,260	14,400	7.5	8,100	8.7	8,710	8.7	8,720	9.9	9,320
		700	pulse	790	9,400	7.1	7,330	8.3	7,940	8.3	7,950	9.5	8,550
		1100		1,240	14,800	7.5	8,100	8.7	8,710	8.7	8,720	9.9	9,320
6.6	48	700		For drives wit	h 48 cells, data	7.4	7,720	8.6	8,330	8.6	8,340	9.8	8,940
		1100		is identical to the 42 cells'		7.8	8,510	9.0	9,120	9.0	9,130	10.2	9,730
6.9		700		data given ab These version		7.4	7,720	8.6	8,330	8.6	8,340	9.8	8,940
		1100		for redundance		7.8	8,510	9.0	9,120	9.0	9,130	10.2	9,730
10	F.4	1100	36 pulse	1,180	20,400	-	_	-	-	-	_	11.6	11,800
		1100		1,020	19,400	_	-	_	-	_	_	11.6	11,800
10	60	1100	36 pulse	1,250	21,700	-	-	-	-	-	-	11.9	12,300
		1100		1,200	22,900	_	-	_	-	_	_	11.9	12,300
10	66	1100	36 pulse	1,250	21,700	-	_	_	_	_	_	12.2	12,800
	ϵc		76										

Footnote:

All SINAMICS PERFECT HARMONY GH150 drives listed above are based on an IP43 design.

All drive cabinets have a maximum height of approx. 2.8 m. Drives with an output voltage of 6.9 kV have a depth of 1,275 mm. Drives with an output voltage of 10 or 11 kV have a depth of approx. 1.5 m. The control cabinet has a depth of 600 mm.

Dual circuit drive									
			24-pulse		36-pulse				
Pulse number	Output current (A)	Type rating (kVA)	Width (m)	Weight (kg)	Width (m)	Weight (kg)			
24 – 36 pulse	1,440	10,000	10.4	11,600	12.8	12,400			
	2,360	16,400	10.8	12,800	13.2	13,600			
	1,420	10,200	10.4	11,600	12.8	12,400			
	2,320	16,700	10.8	12,800	13.2	13,600			
	1,520	10,500	11.8	13,020	14.2	14,240			
	2,560	17,700	12.6	14,400	15.0	15,620			
	1,520	11,000	11.8	13,020	14.2	14,240			
24 – 36 pulse	2,560	18,400	12.6	14,400	15.0	15,620			
	1,420	13,500	11.8	13,020	14.2	14,240			
	2,280	21,700	12.6	14,400	15.0	15,620			
	1,160	12,100	11.8	13,020	14.2	14,240			
	1,860	19,300	12.6	14,400	15.0	15,620			
	1,580	15,100	11.8	13,520	14.2	14,740			
	2,540	24,200	12.6	15,000	15.0	16,220			
	1,580	16,400	11.8	13,520	14.2	14,740			
24-36	2,440	25,400	12.6	15,000	15.0	16,220			
pulse	1,440	16,500	11.8	13,520	14.2	14,740			
	2,320	26,500	12.6	15,000	15.0	16,220			
	1,380	16,500	11.8	13,520	14.2	14,740			
	2,220	26,500	12.6	15,000	15.0	16,220			
	1,580	18,100	12.4	14,260	14.8	15,480			
24-36	2,520	28,800	13.2	15,800	15.6	17,020			
pulse	1,580	18,900	12.4	14,260	14.8	15,480			
	2,480	29,600	13.2	15,800	15.6	17,020			
	For drives with	1 48 cells, data	13.0	15,040	15.4	16,260			
	is identical to data given abo		13.8	16,620	16.2	17,840			
	These versions		13.0	15,040	15.4	16,260			
	for redundanc	y purposes.	13.8	16,620	16.2	17,840			
36 pulse	2,360	40,900	-	-	21.0 22,80				
	2,040	38,900	_	-	21.0	22,800			
36 pulse	2,500	43,300	-	-	21.6	23,800			
	2,400	45,700	-	-	21.6	23,800			
عادیاء۔	2,500	43,300	-	-	22.2	24,800			
36 pulse	2,500	47,600	-	_	22.2	24,800			

Published by Siemens AG 2017

Process Industries and Drives Large Drives P.O. Box 47 43 90025 Nuernberg, Germany

www.siemens.com/SINAMICS

Article No.: PDLD-B10033-01-7600 Printed in Germany Dispo 21503

Subject to changes and errors.
The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upor

All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.

Follow us on: twitter.com/siemensindustry youtube.com/siemens